

A8s Pro

Receiving Card

Specifications

Change History

Document Version	Release Date	Description
V1.1.0	2023-09-13	Updated the appearance diagram and net weight information
V1.0.0	2023-03-03	First release

Introduction

The A8s Pro is a high-end small receiving card developed by Xi'an NovaStar Tech Co., Ltd. (hereinafter referred to as NovaStar). A single A8s Pro supports resolutions up to 512×512@60Hz.

This receiving card supports the exclusive Multi-Layer Calibration and Image Booster technologies of NovaStar. With other various functions, such as HDR, seam brightness correction, low latency, pixel level brightness and chroma calibration, 3D, individual gamma adjustment for RGB, 90° image rotation, and free image rotation, this receiving card can greatly improve the brightness, grayscale and color performance from every aspect, offering users an ultimate visual experience with a uniform, smooth and lifelike image.

The A8s Pro uses high-density connectors for communication to limit the effects of dust and vibration, resulting in high stability. It supports up to 40 groups of parallel RGB data or 64 groups of serial data (expandable to 128 groups of serial data). Its reserved pins allow for custom functions of users. Thanks to its EMC Class B compliant hardware design, the A8s Pro has improved electromagnetic compatibility and is suitable for various on-site setups that have high requirements.

Certifications

RoHS, EMC Class B

If the product does not have the relevant certifications required by the countries or regions where it is to be sold, please contact NovaStar to confirm or address the problem. Otherwise, the customer shall be responsible for the legal risks caused or NovaStar has the right to claim compensation.

Features

Improvements to Display Effect

- Multi-Layer Calibration
 Work with NovaStar's high-precision calibration
 system to not only support the traditional
 brightness and chroma calibration, but also
 generate unique calibration coefficients for lowgrayscale image parts to ensure their uniformity.
- Image Booster (Effects depend on the driver IC)
 - Color Management: Support standard and custom color gamuts, enabling more precise colors on the screen.
 - Precise Grayscale: Individually correct the 65,536 levels of grayscale (16bit) of the driver IC to fix the display problems at low grayscale conditions, such as brightness spikes, brightness dips, color cast and mottling. This function can also better assist other display technologies, such as 22bit+ and individual gamma adjustment for RGB, allowing for a smoother and uniform image.

 22bit+: Improve the LED screen grayscale by 64 times to avoid grayscale loss due to low brightness and allow for a smoother image with more details in dark areas.

HDF

- Support HDR10 and comply with the SMPTE ST 2084 and SMPTE ST 2086 standards.
- Support HLG.
- Seam brightness correction
 The different brightness of seams caused by splicing of modules or cabinets can be corrected to improve the visual experience. The correction is easy and takes effect immediately.
- Low latency The latency of video source on the receiving card end can be reduced to 1 frame (only when using modules with driver IC with built-in RAM).

- Pixel level brightness and chroma calibration
 Work with NovaStar's high-precision calibration
 system to calibrate the brightness and chroma of
 each pixel, effectively removing differences and
 enabling high consistency for both brightness
 and chroma.
- 3D
 Work with the controller that supports 3D function to enable 3D output.
- Individual gamma adjustment for RGB Work with NovaLCT (V5.2.0 or later) and the controller that supports this function to

Improvements to Maintainability

- Smart module (dedicated firmware required)
 Work with the smart module to support module
 ID management, storage of calibration
 coefficients and module parameters, monitoring
 of module temperature, voltage and flat cable
 communication status, LED error detection, and
 recording of the module run time.
- Automatic module calibration
 After a new module with flash memory is installed to replace the old one, the calibration coefficients stored in the flash memory can be automatically uploaded to the receiving card when it is powered on, which ensures unchanged uniform display brightness and chroma.
- Module Flash management
 For modules with flash memory, the information stored in the memory can be managed. The calibration coefficients and module ID can be stored and read back.
- Quick uploading of calibration coefficients
 Upload the calibration coefficients quickly to the receiving cards to improve efficiency.
- One click to apply calibration coefficients in module Flash
 For modules with flash memory, when the Ethernet cable is disconnected, users can hold down the self-test button on the cabinet to upload the calibration coefficients in the memory of the module to the receiving card.
- Mapping function
 The cabinets can be marked on the screen by the color, Ethernet port number and receiving card number, allowing users to easily obtain the locations and connection topology of the receiving cards and quickly complete screen configuration and other operations.

- individually adjust red gamma, green gamma and blue gamma, which can effectively control image non-uniformity at low grayscale conditions and white balance offset, allowing for a more realistic image.
- 90° image rotation
 The display image can be rotated in multiples of 90° (0°/90°/180°/270°).
 - Free image rotation

 Work with SmartLCT and the MCTRL R5 LED display controller to support image rotation at any angle.
- Settings of a stored image in the receiving card The image displayed when the Ethernet cable is disconnected or there is no video signal can be customized.
- Temperature and voltage monitoring
 The receiving card temperature and voltage can be monitored. Any exceptions can be reported actively.
 - Cabinet LCD
 The LCD module of the cabinet can display the temperature, voltage, single run time and total run time of the receiving card.
- Bite error detection
 The Ethernet port communication quality of the receiving card can be monitored and the error data packets can be recorded and reported to help users locate the faults and troubleshoot network communication problems.
- Status detection of dual power supplies
 When two power supplies are used, their working status can be detected.
- Firmware program readback
 The receiving card firmware program can be read back and saved to the local computer.
- Configuration parameter readback
 The receiving card configuration parameters can be read back and saved to the local computer.
- LVDS transmission (dedicated firmware required)
 Low-voltage differential signaling (LVDS)
 transmission can reduce the number of data
 cables from the hub board to module, increase
 the transmission distance, and improve the
 signal transmission quality and electromagnetic
 compatibility (EMC).

Improvements to Reliability

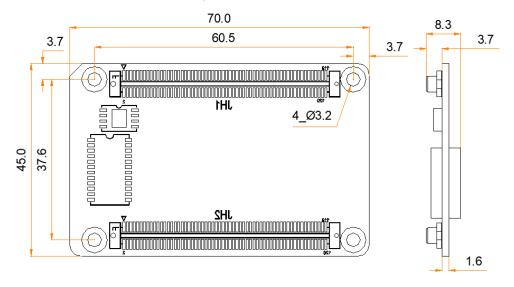
- Dual card backup and status monitoring In an application requiring high reliability, two receiving cards can be mounted onto a single hub board for backup. When the primary card fails, the backup card can serve immediately to ensure uninterrupted operation of the display.
 - The working status of the primary and backup receiving cards can be monitored in NovaLCT V5.2.0 or later.
- Loop backup
 The receiving card and controller form a loop via
 the primary and backup line connections. When
 a fault occurs at a location of the lines, the
 screen can still display the image normally.
- Dual backup of configuration parameters
 The receiving card configuration parameters are
 stored in the application area and factory area of
 the receiving card at the same time. Users
 usually use the configuration parameters in the
 application area. If necessary, users can restore
 the configuration parameters in the factory area
 to the application area.
- Dual program backup
 Two copies of firmware program are stored in
 the application area of the receiving card at the
 factory to avoid the problem that the receiving
 card may get stuck abnormally during program
 update.

Appearance

Bottom

Power Indicator Running Indicator

High-Density Connectors


All product pictures shown in this document are for illustration purpose only. Actual product may vary.

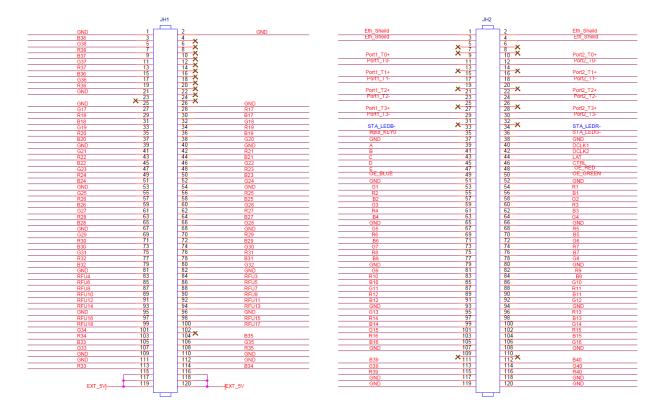
Indicators

Indicator	Color	Status	Description
Running Indicator	Green	Flashing once every 1s	The receiving card is functioning normally. Ethernet cable connection is normal, and video source input is available.
		Flashing once every 3s	Ethernet cable connection is abnormal.
		Flashing 3 times every 0.5s	Ethernet cable connection is normal, but video source input is unavailable.
		Flashing once every 0.2s	The receiving card failed to load the program in the application area and is now using the backup program.
		Flashing 8 times every 0.5s	A redundancy switchover occurred on the Ethernet port and the loop backup has taken effect.
Power indicator	Red	Always on	The power input is normal.

Dimensions

The board thickness is not greater than 2.0 mm, and the total thickness (board thickness + thickness of components on the top and bottom sides) is not greater than 9.0 mm. Ground connection (GND) is enabled for mounting holes.

Tolerance: ±0.3 Unit: mm

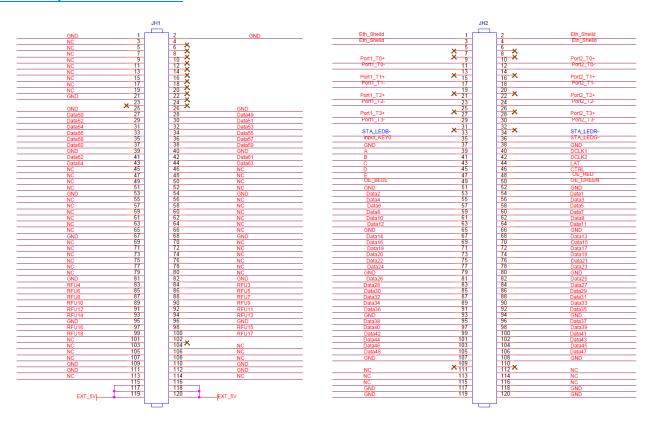


The distance between outer surfaces of the A8s Pro and hub boards after their high-density connectors fit together is 5.0 mm. A 5-mm copper pillar is recommended.

To make molds or trepan mounting holes, please contact NovaStar for a higher-precision structural drawing.

Pins

40 Groups of Parallel RGB Data


		JH1			
	GND	1	2	GND	
/	B38	3	4	NC	
/	G38	5	6	NC NC	
1	R38	7	8	NC	
/	B37	9	10	NC	
/	G37			NC NC	
/		11	12	NC NC	
/	R37	13	14	NC NC	
,	B36	15	16	NC NC	
/	G36	17	18		
/	R36	19	20	NC NC	
	GND	21	22	NC NO	
	NC	23	24	NC	
	GND	25	26	GND	
/	G17	27	28	R17	/
/	R18	29	30	B17	/
/	B18	31	32	G18	/
/	G19	33	34	R19	/
/	R20	35	36	B19	/
/	B20	37	38	G20	/
	GND	39	40	GND	
1	G21	41	42	R21	/
1	R22	43	44	B21	/
1	B22	45	46	G22	/
1	G23	47	48	R23	/
/	R24	49	50	B23	/
/	B24	51	52	G24	/
	GND	53	54	GND	
/	G25	55	56	R25	/
1	R26	57	58	B25	/
/	B26	59	60	G26	/
/	G27	61	62	R27	/
/	R28	63	64	B27	/
/	B28	65	66	G28	/
	GND	67	68	GND	
/	G29	69	70	R29	/
/	R30	71	72	B29	/
/	B30	73	74	G30	/
/	G31	75	76	R31	/
/	R32	77	78	B31	/
/	B32	79	80	G32	/
·	GND	81	82	GND	· ·
/	RFU4	83	84	RFU3	/
/	RFU6	85	86	RFU5	/
/	RFU8	87	88	RFU7	/
/	RFU10	89	90	RFU9	/
/	RFU12	91	90	RFU11	/
/	RFU12 RFU14	91	94	RFU13	/
'					,
/	GND	95	96	GND	I
1	RFU16	97	98	RFU15	/
1	RFU18	99	100	RFU17	/
/	G34	101	102	NC	1
	R34	103	104	B35	/
,	B33	105	106	G35	1

JH1							
1	G33	107	108	R35	/		
	GND	109	110	GND			
	GND	111	112	GND			
/	R33	113	114	B34	/		
	EXT_5V	115	116	EXT_5V			
	EXT_5V	117	118	EXT_5V			
	EXT_5V	119	120	EXT_5V			

JH2					
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground
<u> </u>	NC	5	6	NC	3
	NC	7	8	NC	
	Port1_T0+	9	10	Port2_T0+	
	Port1_T0-	11	12	Port2_T0-	
	NC	13	14	NC	
	Port1_T1+	15	16	Port2_T1+	
	Port1_T1-	17	18	Port2_T1-	
Gigabit Ethernet port	NC	19	20	NC	Gigabit Ethernet port
	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1_T3+	27	28	Port2_T3+	
	Port1_T3-	29	30	Port2_T3-	
	NC	31	32	NC	
Tri-color LED (Reserved)	STA_LEDB-	33	34	STA_LEDR-	Tri-color LED (Reserved)
Test button	Input_KEY0	35	36	STA_LEDG-	Running indicator (active low) Tri-color LED (Reserved)
	GND	37	38	GND	
Line decoding signal	Α	39	40	DCLK1	Shift clock output 1
Line decoding signal	В	41	42	DCLK2	Shift clock output 2
Line decoding signal	С	43	44	LAT	Latch signal output
Line decoding signal	D	45	46	CTRL	Afterglow control signal
Line decoding signal	Е	47	48	OE_RED	Display enable signal
Display enable signal	OE_BLUE	49	50	OE_GREEN	Display enable signal
	GND	51	52	GND	
/	G1	53	54	R1	/
1	R2	55	56	B1	/
1	B2	57	58	G2	/
1	G3	59	60	R3	/
1	R4	61	62	B3	/
1	B4	63	64	G4	/
	GND	65	66	GND	
1	G5	67	68	R5	/
/	R6	69	70	B5	/
1	B6	71	72	G6	/
1	G7	73	74	R7	/
1	R8	75	76	B7	/
1	B8	77	78	G8	/
	GND	79	80	GND	
1	G9	81	82	R9	/
1	R10	83	84	B9	/
1	B10	85	86	G10	/

	JH2					
/	G11	87	88	R11	/	
/	R12	89	90	B11	/	
/	B12	91	92	G12	/	
	GND	93	94	GND		
/	G13	95	96	R13	/	
	R14	97	98	B13	/	
/	B14	99	100	G14	/	
/	G15	101	102	R15	/	
/	R16	103	104	B15	/	
/	B16	105	106	G16	/	
	GND	107	108	GND		
	NC	109	110	NC		
/	B39	111	112	B40	/	
/	G39	113	114	G40	/	
/	R39	115	116	R40	/	
	GND	117	118	GND		
	GND	119	120	GND		

64 Groups of Serial Data

JH1						
	GND	1	2	GND		
	NC	3	4	NC		
	NC	5	6	NC		
	NC	7	8	NC		
	NC	9	10	NC		
	NC	11	12	NC		
	NC	13	14	NC		
	NC	15	16	NC		
	NC	17	18	NC		
	NC	19	20	NC		

JH1					
	GND	21	22	NC	
	NC	23	24	NC	
	GND	25	26	GND	
/	Data50	27	28	Data49	/
/	Data52	29	30	Data51	/
/	Data54	31	32	Data53	/
/	Data56	33	34	Data55	/
/	Data58	35	36	Data57	/
/	Data60	37	38	Data59	/
	GND	39	40	GND	
/	Data62	41	42	Data61	/
/	Data64	43	44	Data63	/
	NC	45	46	NC	
	NC	47	48	NC	
	NC	49	50	NC	
	NC	51	52	NC	
	GND	53	54	GND	
	NC	55	56	NC	
	NC	57	58	NC	
	NC	59	60	NC	
	NC	61	62	NC	
	NC	63	64	NC	
	NC	65	66	NC	
	GND	67	68	GND	
	NC	69	70	NC	
	NC	71	72	NC	
	NC	73	74	NC	
	NC	75	76	NC	
	NC	77	78	NC	
	NC	79	80	NC	
	GND	81	82	GND	
/	RFU4	83	84	RFU3	/
/	RFU6	85	86	RFU5	/
/	RFU8	87	88	RFU7	/
/	RFU10	89	90	RFU9	/
/	RFU12	91	92	RFU11	/
/	RFU14	93	94	RFU13	/
	GND	95	96	GND	
/	RFU16	97	98	RFU15	/
/	RFU18	99	100	RFU17	/
	NC	101	102	NC	
	NC	103	104	NC	
	NC	105	106	NC	
	NC	107	108	NC	
	GND	109	110	GND	
	GND	111	112	GND	
	NC	113	114	NC	
	EXT_5V	115	116	EXT_5V	
	EXT_5V	117	118	EXT_5V	
	EXT_5V	119	120	EXT_5V	

JH2					
Chassis ground	Eth_Sheild	1	2	Eth_Sheild	Chassis ground

			JH2		
Chassis ground	Eth_Sheild	3	4	Eth_Sheild	Chassis ground
	NC NC	5	6	NC NC	3.143313 g. 34.14
	NC	7	8	NC	
	Port1_T0+	9	10	Port2_T0+	
	Port1_T0-	11	12	Port2_T0-	
	NC	13	14	NC	
	Port1_T1+	15	16	Port2_T1+	
	Port1_T1-				
Circhit Ethornot nort		17	18	Port2_T1- NC	Circle it Eth amant mant
Gigabit Ethernet port	NC	19	20		Gigabit Ethernet port
	Port1_T2+	21	22	Port2_T2+	
	Port1_T2-	23	24	Port2_T2-	
	NC	25	26	NC	
	Port1_T3+	27	28	Port2_T3+	
	Port1_T3-	29	30	Port2_T3-	
	NC	31	32	NC	
Tri-color LED (Reserved)	STA_LEDB-	33	34	STA_LEDR-	Tri-color LED (Reserved)
Test button	Input_KEY0	35	36	STA_LEDG-	Running indicator (active low) Tri-color LED (Reserved)
	GND	37	38	GND	
Line decoding signal	А	39	40	DCLK1	Shift clock output 1
Line decoding signal	В	41	42	DCLK2	Shift clock output 2
Line decoding signal	С	43	44	LAT	Latch signal output
Line decoding signal	D	45	46	CTRL	Afterglow control signal
Line decoding signal	Е	47	48	OE_RED	Display enable signal
Display enable signal	OE_BLUE	49	50	OE_GREEN	Display enable signal
21 23 2	GND	51	52	GND	31 29 2 23 2
1	Data2	53	54	Data1	/
/	Data4	55	56	Data3	/
/	Data6	57	58	Data5	/
/	Data8	59	60	Data7	/
,	Data10	61	62	Data9	/
,	Data10	63	64	Data11	/
,	GND				,
		65	66	GND	,
/	Data14	67	68	Data13	/
/	Data16	69	70	Data15	/
/	Data18	71	72	Data17	/
/	Data20	73	74	Data19	/
/	Data22	75	76	Data21	1
	Data24	77	78	Data23	/
	GND	79	80	GND	
/	Data26	81	82	Data25	/
	Data28	83	84	Data27	/
	Data30	85	86	Data29	/
/	Data32	87	88	Data31	/
1	Data34	89	90	Data33	/
1	Data36	91	92	Data35	/
	GND	93	94	GND	
/	Data38	95	96	Data37	/
/	Data40	97	98	Data39	/
/	Data42	99	100	Data41	/
/	Data44	101	102	Data43	/
/	Data44 Data46	103	102	Data45	,
/		105	104	_	,
	Data48			Data47	,
	GND	107	108	GND	

www.novastar.tech 9

JH2					
	NC	109	110	NC	
	NC	111	112	NC	
	NC	113	114	NC	
	NC	115	116	NC	
	GND	117	118	GND	
	GND	119	120	GND	

The recommended power input is 5.0 V.

OE_RED, OE_GREEN and OE_BLUE are display enable signals. When RGB are not controlled separately, use OE_RED. When the PWM chip is used, they are used as GCLK signals.

In the mode of 128 groups of serial data, Data65-Data128 are multiplexed into Data1-Data64, respectively.

Reference Design for Extended Functions

	Pins for Extended Functions						
Pin	Recommended Module Flash Pin	Description					
RFU3	HUB_CODE0	Flash control pin 1					
RFU4	HUB_SPI_CLK	Clock signal of serial pin					
RFU5	HUB_CODE1	Flash control pin 2					
RFU6	HUB_SPI_CS	CS signal of serial pin					
RFU7	HUB_CODE2	Flash control pin 3					
RFU8	HUB_SPI_MOSI	Module Flash data storage input					
RFU9	HUB_CODE3	Flash control pin 4					
RFU10	HUB_SPI_MISO	Module Flash data storage output					
RFU11	HUB_H164_CSD	74HC164 data signal					
RFU12	/	/					
RFU13	HUB_H164_CLK	74HC164 clock signal					
RFU14	POWER_STA1	Dual power supply detection signal 1					
RFU15	MS_DATA	Dual card backup connection signal					
RFU16	POWER_STA2	Dual power supply detection signal 2					
RFU17	MS_ID	Dual card backup identifier signal					
RFU18	HUB_CODE4	Flash control pin 5					

Specifications

Maximum Resolution	512×512@60Hz	
Electrical Parameters	Input voltage	DC 3.8 V to 5.5 V
	Rated current	0.5 A
	Rated power consumption	2.5 W
Operating Environment	Temperature	-20°C to +70°C
	Humidity	10% RH to 90% RH, non-condensing
Storage Environment	Temperature	-25°C to +125°C
	Humidity	0% RH to 95% RH, non-condensing

www.novastar.tech

Physical Specifications	Dimensions	70.0 mm × 45.0 mm × 8.3 mm
	Net weight	17.2 g Note: It is the weight of a single receiving card only.
Packing Information	Packing specifications	Each receiving card is packaged in a blister pack. Each packing box contains 80 receiving cards.
	Packing box dimensions	378.0 mm × 190.0 mm × 120.0 mm

The amount of current and power consumption may vary depending on various factors such as product settings, usage, and environment.

Copyright © 2023 Xi'an NovaStar Tech Co., Ltd. All Rights Reserved.

No part of this document may be copied, reproduced, extracted or transmitted in any form or by any means without the prior written consent of Xi'an NovaStar Tech Co., Ltd.

Trademark

NOVA 5TAR is a trademark of Xi'an NovaStar Tech Co., Ltd.

Statement

Thank you for choosing NovaStar's product. This document is intended to help you understand and use the product. For accuracy and reliability, NovaStar may make improvements and/or changes to this document at any time and without notice. If you experience any problems in use or have any suggestions, please contact us via the contact information given in this document. We will do our best to solve any issues, as well as evaluate and implement any suggestions.

Official website
www.novastar.tech
Technical support
support@novastar.tech